
Project 14: Text Centering

Joseph Carmack

December 9, 2016

Abstract

The goal of this project was to make some progress in using machine learning to

read and make sense of digital micrographs of old, hand-written documents. Because

data collection and preprocessing to get the data into a format suitable for training is

a huge task, the mnist data set was used as a substitute. The challenge addressed was

that of centering hand-written text. the Mnist data set was modi�ed for this task by

adding additional pixels to make the images bigger followed by a random shift in the

hand-written number to o�-center the hand-written numbers. The shifts were stored as

labels to be predicted by the machine learning system. A feed-forward neural network

was then trained and tuned to get optimal results. The number of hidden layers and

units per layer were varied. L1, L2, and no regularization were also experimented with.

Results will be discussed in the body of the report.

1 Modifying Mnist

In modifying the Mnist data set I decided the images needed to be enlarged so that they
could be shifted signi�cantly away from the center in a random way. So the �rst thing I did
was to write some code to enlarge the images by adding 14 extra pixels around the existing
images. After this I gave the original 28×28 pixels a random pixel shift in the horizontal
and vertical directions with a maximum shift in either direction of 14 pixels. Examples are
shown in Figure 1. The �nal images were 56×56 pixels resulting in a one-dimensional vector
representation with 3136 elements.

2 Neural Network Trianing and Tuning

In order to be able to get rapid feedback on changing meta parameters, I used a subset of
the training and testing shifted mnist data (training on all the training data and testing on
all the testing data took 4+ hours to run on my workstation). For the training subset I used
the �rst 1000 training patterns as opposed to the entire 60,000. For the testing subset I used
the �rst 100 patterns from the testing data out of the 10,000 total patterns. After getting
a feel for the optimal meta parameters I then scaled up and trained on the entire training
data and tested on the entire testing data.

1



(a) (b) (c) (d)

Figure 1: Sample of enlarged and shifted mnist images

The meta parameters that I tweeked included the number of layers, the number of units
per layer, L1 or L2 or no regularization, and regularization strength. The error metric I used
was the average summed squared error. I chose this error metric so that results would be
comparable when switching between the data subsets and the full data sets. I plotted the
avg SSE versus number of training epochs for both the training data and the testing data.
This plot would allow me to see how the di�erent sets of meta parameters were in�uencing
how well the model was generalizing and also be able to see when over�tting was occuring.

(a) no regularization (b) L2 regularization (c) L1 regularization

Figure 2: Comparing Regularizations using one hidden layer with 100 units.

I started with a single hidden layer with 100 units. I used this topology to explore what
was best for regularization. I tried a number of di�erent regularization strengths, λ, for
both L1 and L2 regularization and the best results are depicted in Figure 2. As can be
seen from these plots it seems that L2 regularization seems to work best. L1 regularization
achieves fairly good results but is very unstable. I think this is because some weights get so
small that there is either numercal cancellation going on or some weights become alternate
between being essentially zero and non-zero. I am not sure the exact reason. Regardless, I
chose to stick with L2 regularization.

Next I moved on to varying the number of layers and the number of units per layer.
One question of I had going into this next step of tuning my neural network was, �Why do
we use more than one hidden layer at all?� I did did some analysis, and discovered that

2



(a) Single hidden layer with 268 activation units. (b) Three hidden layers with a (200,60,8) topology.

Figure 3: Comparing the bene�t of hidden layers with a total of 268 activation units.

if you keep the total number of units in the neural network constant, the total number of
weights was also constant regardless of how many layers you organized those units into. I also
spent some time playing around with plotting either summed or nested Hyperbolic Tangent
functions. When using a single hidden layer the result is a large sum of activation functions
evaluated at their individual net values. On the other hand, for more than one hidden layer
with the same amount of activation units, you get a sum that has fewer terms because the
activation functions get nested. From my qualitative observations it seemed that a sum of
Hyperbolic Tangent functions resulted in greater �exibility than the same number where
they were nested. This lead me to wonder if I increased the total number of activation units
in my neural network, then would a single hidden layer work better than arranging the units
into additional hidden layers.

Figure 3 shows the error plots for two cases. The only di�erence between the two cases
is the arrangement of activation units into hidden layers. In the �rst case, Figure 3a, only a
single hidden layer was used with a total of 268 activation units. In this graph the test error
gets down to a value between 11 and 12. It also might not have fully converged because you
don't see any evidence of the onset of over�tting yet. However, I do think it is quite close to
convergence and would be very surprised to see the test error improve below a value of 10.
In the second case, Figure 3b, the same number of activation units is used, 268, except that
they are organized into three hidden layers as opposed to only one. The layer topology is
200, 60, and 8 activation units in the �rst, second, and third hidden layers. In the plot you
can see that the test error gets down to a value of about 7 which is much better than the
�rst case. At least for this data set, I would say that this is conclusive evidence that using
multiple hidden layers works better than simply piling all the activation units into a single
hidden layer.

I tried several other topologies for one, two, and three hidden layers. Interestingly, I
found that the 200, 60, 8 three layer topology worked best out of all my di�erent topology
selections which included topologies with as much as 388 total activation units. Consequently

3



Figure 4: Training and testing on all the data (60,000 training patterns and 10,000 testing
patterns).

I decided to use this topology, along with L2 regularization to train and test on the entire
data. The error plot for running on the entire data is shown in Figure 4. As can be seen
from the plot, the neural network achieves a pretty good generalization with the average
pixel shift error being less than a single pixel.

3 Analysing Final Results

I spent some time analysing the predictions made by my trained network on the testing
data. First of all the predictided labels were not integral but had non-zero decimal values.
The actual labels were integer numbers representing the number of pixels the original mnist
image was shifted vertically and horizontally. Consequently, I decided to round all the
predictions to their closest integer values. Next I decided to plot the absolute di�erence
between the predictions and the actual labels. Figure 5 shows the results for the vertical
and horizontal absolute di�erences. I sorted the patterns when generating these plots by the

(a) Vertical pixel shift error. (b) Horizontal pixel shift error.

Figure 5: Absolute di�erence between predicted pixel shifts and actual shifts.

4



patterns corresponding number (0-9). This way I could see if there was a particular number
that gave the network more trouble at recentering than the others. From examining the
Figure 5, it is clear that sevens, ones, and �ves seem to have the worst errors, in that order.

I also generated the actual images for the worst 20 contenders. These are shown in Figure
6. Interestingly I noticed that all of the images in Figure 6 had very large shifts in at least

Figure 6: Top 20 patterns that the neural network struggles most to recenter.

one of the horizontal or vertical directions but usually both (being placed in a corner). So
for some reason the neural network struggles most to recenter sevens, ones, and �ves, and
especially those that are in corners. I am not exactly sure why this is.

4 Lessons Learned

From this project I have learned a lot. First of all I experienced that the size of the meta
parameter space for neural networks is staggeringly huge. There are so many ways I could
have continued to try to tune this network that I didn't try. There are a huge number
of regularization methods and network topologies that I didn't try. I also only tried one
activation function and there are many others that could have been tested.

I did learn that when keeping the number of activation units constant, using more than
one hidden layer produced better results than just sticking all the units in a single hidden

5



layer. I am not sure how well this generalizes to other datasets but I am guessing there are
many data sets where this is also true. Of course their may be those where this is not true.

6


